Поиск в словарях
Искать во всех

Физический энциклопедический словарь - калибровочная симметрия.

 

Калибровочная симметрия.

калибровочная симметрия.
С., отвечающая тому факту, что нек-рые сохраняющиеся физ. величины, обобщённо называемые «зарядами» (напр., электрич. заряд, гиперзаряд, изотопический спин, «цвет»), явл. одновременно источниками полей, переносящих вз-ствия между ч-цами, обладающими данным типом «заряда». Закону сохранения обобщённых «зарядов» отвечает инвариантность лагранжиана системы относительно определённой группы преобразований —

калибровочных преобразований — с нек-рыми произвольными параметрами, не зависящими от пространственно-временной точки (глобальная симметрия). Так, закону сохранения электрич. заряда соответствует инвариантность лагранжиана относительно умножения волн. ф-ций заряж. ч-ц (i) на фазовый множитель:

где zi — заряд ч-цы (в ед. элем. электрич. заряда), а  — произвольный числовой множитель. Аналогично сохранение изотопич. спина или «цветового заряда» вытекает из инвариантности лагранжиана относительно группы специальных унитарных преобразований [соответственно SU(2) и SU(3)] с произвольными пост. параметрами. Физ. требование того, чтобы указанные С. выполнялись не только глобально, но и л о к а л ь н о, т. е. для преобразований, параметры к-рых явл. произвольными ф-циями пространственно-временной точки

[напр., в (1)  являлся бы произвольной ф-цией координат и времени: =f(x, у, z, t)l, может быть выполнено при условии, если одновременно определённым образом преобразуются и поля, источниками к-рых служат данные заряды. Возникающие поля оказываются определёнными с точностью до произвольных ф-ций, компенсирующих произвол в выборе локальных параметров преобразования С. Из ур-ний движения следует, что в пространств. отношении эти компенсирующие поля должны быть векторными полями. Требование независимости физ. величин от произвола, с к-рым определены компенсирующие поля, т.е. от калибровки, однозначно приводит к ур-нию движения и законам вз-ствия компенсирующих, или калибровочных, полей. Из этого требования также следует, что масса покоя ч-ц (квантов полей), отвечающих калибровочным полям, должна быть равна нулю. На основе калибровочной С. построены совр. теории электрослабого и сильного вз-ствий (последней явл. квантовая хромодинамика). Для объяснения отличной от нуля массы промежуточных векторных бозонов W± , Z°, являющихся квантами калибровочных полей и выступающих в кач-ве переносчиков короткодействующего слабого вз-ствия, предложен механизм спонтанного нарушения симметрии.

Симметрия и законы сохранения

Согласно Нётер теореме, каждому преобразованию С., характеризуемому одним непрерывно изменяющимся параметром, соответствует величина, к-рая сохраняется (не меняется со временем) для системы, обладающей этой С. Из С. физ. законов относительно сдвига замкнутой системы в пр-ве, поворота её как целого и изменения начала отсчёта времени

следуют соответственно законы сохранения импульса, момента кол-ва движения и энергии; из С. относительно локальных калибровочных преобразований — законы сохранения зарядов (электрического, гиперзаряда и др.); из изотопич. инвариантности — сохранение изотопич. спина в процессах сильного вз-ствия. Дискр. С. в классич. механике не приводят к к.-л. законам сохранения. Однако в квант. механике, в к-рой состояние системы описывается волн. ф-цией, или для волн. полей (напр., эл.-магн. поля), где справедлив суперпозиции принцип, из существования дискр. С. следуют законы сохранения нек-рых специфич. величин, не имеющих аналогов в классич. механике [напр., пространственной, зарядовой и комбинированной (СР-) чётностей; см. также G-чётность].

Симметрия квантовомеханических систем и вырождение

Если квантовомеханич. система обладает определённой С., то операторы сохраняющихся физ. величин, соответствующих этой С., коммутируют с гамильтонианом системы. Если нек-рые из этих операторов не коммутируют между собой, уровни энергии системы оказываются вырожденными (см. Вырождение): определённому уровню энергии отвечает неск. разл. состояний, преобразующихся друг через друга при преобразованиях С. В матем. отношении эти состояния представляют базис неприводимого представления группы С, системы. Это обусловливает плодотворность применения методов теории групп в квант. механике.

Помимо вырождения уровней энергии, связанного с явной С. системы (напр., относительно поворотов системы как целого), в ряде задач существует дополнит. вырождение, связанное с т. н. скрытой С. вз-ствия. Такие скрытые С. существуют, напр., для кулоновского вз-ствия и для изотропного осциллятора. Скрытая С. кулоновского вз-ствия, приводящая к вырождению состояний с разл. орбит. моментами, обусловлена явной С. кулоновского вз-ствия в четырёхмерном импульсном пр-ве.

Если система, обладающая к.-л. С., находится в поле сил, нарушающих эту С. (но достаточно слабых, чтобы их можно было рассматривать как малое возмущение), происходит расщепление вырожд. уровней энергии исходной системы: разл. состояния, к-рые в силу С. системы имели одинаковую энергию, под действием «несимметричного» возмущения приобретают разл. энергетич. смещения. В случаях, когда возмущающее поле обладает нек-рой С., составляющей часть С. исходной системы, вырождение уровней энергии снимается не полностью: часть уровней остаётся вырожденной в соответствии с С.

682



вз-ствия, «включающего» возмущающее поле.

Наличие в системе вырожденных по энергии состояний в свою очередь указывает на существование С. вз-ствия и позволяет в принципе найти эту С., когда она заранее не известна. Последнее обстоятельство играет важнейшую роль, напр., в физике элем. ч-ц.

Динамические симметрии

Очень плодотворно понятие т. н. динамической С. системы, к-рое возникает, когда рассматриваются преобразования, включающие переходы между состояниями системы с разл. энергиями. Неприводимым представлением группы динамич. С. будет весь спектр стационарных состояний системы. Понятие динамич. С. можно распространить и на случаи, когда гамильтониан системы зависит явно от времени, причём в одно неприводимое представление динамич. группы С. объединяются в этом случае все состояния квантовомеханич. системы, не являющиеся стационарными (т. е. не обладающие заданной энергией).

В определённом смысле к динамич. С. может быть отнесена также киральная симметрия.

• В и г н е р В., Этюды о симметрии, пер. с англ., М., 1971.

С. С. Герштейн.

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):